当前位置: 首页  新手入门  论文写作
论文写作  

一、写好数模答卷的重要性

1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2.答卷是竞赛活动的成绩结晶的书面形式。

3.写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题

1.评阅原则

假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。

2.答卷的文章结构

1)摘要。

2)问题的叙述,问题的分析,背景的分析等。

3)模型的假设,符号说明(表)。

4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。

6)结果表示、分析与检验,误差分析,模型检验。

7)模型评价,特点,优缺点,改进方法,推广。

8)参考文献。

9)附录、计算框图、详细图表。

3.要重视的问题

1)摘要。包括:

a.模型的数学归类(在数学上属于什么类型);

b.建模的思想(思路);

c.算法思想(求解思路);

d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);

e.主要结果(数值结果,结论;回答题目所问的全部“问题”)。

▲注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。

2)问题重述。

3)模型假设。

根据全国组委会确定的评阅原则,基本假设的合理性很重要。

a.根据题目中条件作出假设

b.根据题目中要求作出假设

关键性假设不能缺;假设要切合题意。

4)模型的建立。

a.基本模型:

ⅰ)首先要有数学模型:数学公式、方案等;

ⅱ)基本模型,要求完整,正确,简明;

b.简化模型:

ⅰ)要明确说明简化思想,依据等;

ⅱ)简化后模型,尽可能完整给出;

c.模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。

ⅰ)能用初等方法解决的、就不用高级方法;

ⅱ)能用简单方法解决的,就不用复杂方法;

ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:

▲建模中,模型本身,简化的好方法、好策略等;

▲模型求解中;

▲结果表示、分析、检验,模型检验;

▲推广部分。

e.在问题分析推导过程中,需要注意的问题:

ⅰ)分析:中肯、确切;

ⅱ)术语:专业、内行;

ⅲ)原理、依据:正确、明确;

ⅳ)表述:简明,关键步骤要列出;

ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。

5)模型求解。

a.需要建立数学命题时:

命题叙述要符合数学命题的表述规范,尽可能论证严密。

b.需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称。

c.计算过程,中间结果可要可不要的,不要列出。

d.设法算出合理的数值结果。

6)结果分析、检验;模型检验及模型修正;结果表示。

a.最终数值结果的正确性或合理性是第一位的;

b.对数值结果或模拟结果进行必要的检验;

结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。

c.题目中要求回答的问题,数值结果,结论,须一一列出;

d.列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;

e.结果表示:要集中,一目了然,直观,便于比较分析。

▲数值结果表示:精心设计表格;可能的话,用图形图表形式。

▲求解方案,用图示更好。

7)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。

8)模型评价

优点突出,缺点不回避。

改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。

9)参考文献

10)附录

详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。

检查答卷的主要三点,把三关:

a.模型的正确性、合理性、创新性

b.结果的正确性、合理性

c.文字表述清晰,分析精辟,摘要精彩

三、关于写答卷前的思考和工作规划

答卷需要回答哪几个问题――建模需要解决哪几个问题;

问题以怎样的方式回答――结果以怎样的形式表示;

每个问题要列出哪些关键数据――建模要计算哪些关键数据;

每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理

1.准确――科学性;

2.条理――逻辑性;

3.简洁――数学美;

4.创新――研究、应用目标之一,人才培养需要;

5.实用――建模、实际问题要求。

五、建模理念

1.应用意识

要解决实际问题,结果、结论要符合实际;

模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

2.数学建模

用数学方法解决问题,要有数学模型;

问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

3.创新意识

建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。